ãŠã£ã³ããŠé¢æ°ã§æç³»åããŒã¿ã®åãè§£ãæŸã¡ãŸãããã®ã¬ã€ãã§ã¯ãåºæ¬çãªæŠå¿µãå®è·µçãªäŸãããã³ããŒã¿åæã®é«åºŠãªãã¯ããã¯ãã«ããŒããŸãã
æç³»ååæïŒããŒã¿ã€ã³ãµã€ãã®ããã®ãŠã£ã³ããŠé¢æ°ããã¹ã¿ãŒãã
æç³»åããŒã¿ã¯ããã®é£ç¶çã§æéäŸåçãªæ§è³ªã«ãã£ãŠç¹åŸŽä»ããããæ¥çå šäœã«éåšããŠããŸããæ ªäŸ¡ã®è¿œè·¡ããŠã§ããµã€ãã®ãã©ãã£ãã¯ã®ç£èŠãããã»ã³ãµãŒã®èªã¿åãå€ã®åæã販売åŸåã®äºæž¬ãŸã§ãæç³»åããŒã¿ããæå³ã®ããæŽå¯ãæœåºããèœåã¯ãæ å ±ã«åºã¥ããæææ±ºå®ã«ãšã£ãŠéåžžã«éèŠã§ãããŠã£ã³ããŠé¢æ°ã¯ãããŒãã«ãŸãã¯ããŒã¿ãã¬ãŒã å ã®çŸåšã®è¡ã«é¢é£ããè¡ã®ã»ããå šäœã§èšç®ãå®è¡ããããã®åŒ·åã§æè»ãªããŒã«ã»ãããæäŸããæç³»ååæã«äžå¯æ¬ ãªãã®ãšãªã£ãŠããŸãã
æç³»åããŒã¿ã®çè§£
æç³»åããŒã¿ã¯ãæéé ã«ã€ã³ããã¯ã¹ãä»ããããããŒã¿ãã€ã³ãã®ã·ãŒã±ã³ã¹ã§ããããŒã¿ãã€ã³ãã¯ã次ã®ãããªããŸããŸãªã¡ããªãã¯ã衚ãããšãã§ããŸãã
- 財åããŒã¿ïŒæ ªäŸ¡ãçºæ¿ã¬ãŒããååŒé
- 販売ããŒã¿ïŒããŸããŸãªè£œåã®æ¥æ¬¡ã鱿¬¡ããŸãã¯ææ¬¡ã®è²©å£²æ°
- ã»ã³ãµãŒããŒã¿ïŒæž©åºŠæž¬å®å€ãå§å枬å®å€ã湿床ã¬ãã«
- ãŠã§ããã©ãã£ãã¯ããŒã¿ïŒãŠã§ããµã€ããžã®ã¢ã¯ã»ã¹æ°ãããŒãžãã¥ãŒæ°ãé¢è±ç
- ãšãã«ã®ãŒæ¶è²»ããŒã¿ïŒæéããšãŸãã¯æ¥ããšã®é»å䜿çšé
æç³»åããŒã¿ãåæããã«ã¯ããã¿ãŒã³ãåŸåãå£ç¯æ§ãç¹å®ããããšãå«ãŸããŸããããã¯ãå°æ¥ã®å€ãäºæž¬ããããç°åžžãæ€åºããããããžãã¹ããã»ã¹ãæé©åããããã«äœ¿çšã§ããŸãã
ãŠã£ã³ããŠé¢æ°ã®ç޹ä»
ãŠã£ã³ããŠé¢æ°ã¯ããŠã£ã³ããŠåãããéèšé¢æ°ãŸãã¯åæé¢æ°ãšãåŒã°ããè¡ãåŸæ¥ã®éèšé¢æ°ïŒSUMãAVGãCOUNTãªã©ïŒã®ããã«åäžã®çµæã»ããã«ã°ã«ãŒãåããã«ãçŸåšã®è¡ã«é¢é£ããè¡ã®ã»ããã«å¯ŸããŠèšç®ãå®è¡ã§ããŸãããã®æ©èœã¯ãç§»åå¹³åã环ç©åããã®ä»ã®æéããŒã¹ã®ã¡ããªãã¯ãèšç®ããå¿ èŠãããå Žåãå€ãæç³»ååæã«ç¹ã«åœ¹ç«ã¡ãŸãã
ãŠã£ã³ããŠé¢æ°ã¯éåžžãæ¬¡ã®ã³ã³ããŒãã³ãã§æ§æãããŸãã
- 颿°ïŒå®è¡ããèšç®ïŒAVGãSUMãRANKãLAGãªã©ïŒã
- OVERå¥ïŒèšç®ã«äœ¿çšãããè¡ã®ãŠã£ã³ããŠãå®çŸ©ããŸãã
- PARTITION BYå¥ïŒãªãã·ã§ã³ïŒïŒããŒã¿ãããŒãã£ã·ã§ã³ã«åå²ãããŠã£ã³ããŠé¢æ°ãåããŒãã£ã·ã§ã³ã«åå¥ã«é©çšãããŸãã
- ORDER BYå¥ïŒãªãã·ã§ã³ïŒïŒåããŒãã£ã·ã§ã³å ã®è¡ã®é åºãæå®ããŸãã
- ROWS/RANGEå¥ïŒãªãã·ã§ã³ïŒïŒãŠã£ã³ããŠãã¬ãŒã ãå®çŸ©ããŸããããã¯ãèšç®ã«äœ¿çšãããçŸåšã®è¡ãåºæºãšããè¡ã®ã»ããã§ãã
äž»èŠãªæŠå¿µãšæ§æ
1. OVER()å¥
OVER()å¥ã¯ããŠã£ã³ããŠé¢æ°ã®äžå¿ã§ãã颿°ãæäœããè¡ã®ãŠã£ã³ããŠãå®çŸ©ããŸããåŒæ°ã®ãªãåçŽãªOVER()å¥ã¯ãçµæã»ããå
šäœããŠã£ã³ããŠãšèŠãªããŸããäŸïŒ
SQLã®äŸïŒ
SELECT
date,
sales,
AVG(sales) OVER()
FROM
sales_data;
ãã®ã¯ãšãªã¯ãsales_dataããŒãã«ã®ãã¹ãŠã®æ¥ä»ã«ãããå¹³å売äžé«ãèšç®ããŸãã
2. PARTITION BY
PARTITION BYå¥ã¯ãããŒã¿ãããŒãã£ã·ã§ã³ã«åå²ãããŠã£ã³ããŠé¢æ°ã¯åããŒãã£ã·ã§ã³ã«åå¥ã«é©çšãããŸããããã¯ãããŒã¿å
ã®ç°ãªãã°ã«ãŒãã®ã¡ããªãã¯ãèšç®ããå Žåã«åœ¹ç«ã¡ãŸãã
SQLã®äŸïŒ
SELECT
date,
product_id,
sales,
AVG(sales) OVER (PARTITION BY product_id)
FROM
sales_data;
ãã®ã¯ãšãªã¯ã補åããšã«å¹³å売äžé«ãåå¥ã«èšç®ããŸãã
3. ORDER BY
ORDER BYå¥ã¯ãåããŒãã£ã·ã§ã³å
ã®è¡ã®é åºãæå®ããŸããããã¯ãå®è¡åèšãç§»åå¹³åãããã³ãã®ä»ã®æéããŒã¹ã®ã¡ããªãã¯ãèšç®ããããã«äžå¯æ¬ ã§ãã
SQLã®äŸïŒ
SELECT
date,
sales,
SUM(sales) OVER (ORDER BY date)
FROM
sales_data;
ãã®ã¯ãšãªã¯ãæéã®çµéã«äŒŽã売äžé«ã®çޝç©åãèšç®ããŸãã
4. ROWS/RANGE
ROWSå¥ãšRANGEå¥ã¯ããŠã£ã³ããŠãã¬ãŒã ãå®çŸ©ããŸããããã¯ãèšç®ã«äœ¿çšãããçŸåšã®è¡ãåºæºãšããè¡ã®ã»ããã§ããROWSå¥ã¯ç©ççãªè¡çªå·ã«åºã¥ããŠãŠã£ã³ããŠãã¬ãŒã ãæå®ããRANGEå¥ã¯ORDER BYåã®å€ã«åºã¥ããŠãŠã£ã³ããŠãã¬ãŒã ãæå®ããŸãã
ROWSã®äŸïŒ
SELECT
date,
sales,
AVG(sales) OVER (ORDER BY date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW)
FROM
sales_data;
ãã®ã¯ãšãªã¯ãéå»3æ¥éïŒåœæ¥ãå«ãïŒã®å£²äžé«ã®ç§»åå¹³åãèšç®ããŸãã
RANGEã®äŸïŒ
SELECT
date,
sales,
AVG(sales) OVER (ORDER BY date RANGE BETWEEN INTERVAL '2' DAY PRECEDING AND CURRENT ROW)
FROM
sales_data;
ãã®ã¯ãšãªã¯ãéå»2æ¥éïŒåœæ¥ãå«ãïŒã®å£²äžé«ã®ç§»åå¹³åãèšç®ããŸãã`RANGE`ã¯ãæ°å€ãŸãã¯æ¥ä»/æå»ããŒã¿åã®é åºä»ããããåãå¿ èŠã§ãã
æç³»ååæã®ããã®äžè¬çãªãŠã£ã³ããŠé¢æ°
1. ããŒãªã³ã°/ç§»åå¹³å
ããŒãªã³ã°å¹³åïŒç§»åå¹³åãšãåŒã°ããŸãïŒã¯ãæç³»åããŒã¿ã®çæçãªå€åãå¹³æ»åããé·æçãªåŸåã匷調ããããã«åºã䜿çšãããŠããææ³ã§ããããã¯ãæå®ãããæéã«ãããå€ãå¹³åããããšã«ãã£ãŠèšç®ãããŸãã
SQLã®äŸïŒ
SELECT
date,
sales,
AVG(sales) OVER (ORDER BY date ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) AS moving_average_7_days
FROM
sales_data;
ãã®ã¯ãšãªã¯ã7æ¥éã®å£²äžé«ã®ç§»åå¹³åãèšç®ããŸãã
Pythonã®äŸïŒPandasã䜿çšïŒïŒ
import pandas as pd
# 'date'åãš'sales'åãæã€Pandas DataFrame 'sales_df'ããããšä»®å®ããŸã
sales_df['moving_average_7_days'] = sales_df['sales'].rolling(window=7).mean()
ã°ããŒãã«ãªã¢ããªã±ãŒã·ã§ã³ã®äŸïŒå€åœç±å°å£²æ¥è ã¯ã30æ¥éã®ç§»åå¹³åã䜿çšããŠãæ¥ã ã®å£²äžé«ã®å€åãå¹³æ»åããããŸããŸãªå°åã«ãããæ ¹æ¬çãªå£²äžé«ã®åŸåãç¹å®ã§ããŸãã
2. 环ç©å
环ç©åïŒå®è¡åèšãšãåŒã°ããŸãïŒã¯ãçŸåšã®è¡ãŸã§ã®å€ã®åèšãèšç®ããŸããããã¯ãæéã®çµéã«äŒŽãåèšçޝç©å€ã远跡ããã®ã«åœ¹ç«ã¡ãŸãã
SQLã®äŸïŒ
SELECT
date,
sales,
SUM(sales) OVER (ORDER BY date) AS cumulative_sales
FROM
sales_data;
ãã®ã¯ãšãªã¯ãæéã®çµéã«äŒŽã売äžé«ã®çޝç©åãèšç®ããŸãã
Pythonã®äŸïŒPandasã䜿çšïŒïŒ
import pandas as pd
# 'date'åãš'sales'åãæã€Pandas DataFrame 'sales_df'ããããšä»®å®ããŸã
sales_df['cumulative_sales'] = sales_df['sales'].cumsum()
ã°ããŒãã«ãªã¢ããªã±ãŒã·ã§ã³ã®äŸïŒåœéçãªeã³ããŒã¹äŒæ¥ã¯ã环ç©å£²äžé«ã䜿çšããŠãããŸããŸãªåžå Žã§ã®æ°è£œåã®çºå£²ããåŸãããç·åçã远跡ã§ããŸãã
3. ãªãŒããšã©ã°
LEAD颿°ãšLAG颿°ã䜿çšãããšãããããåŸç¶ãŸãã¯å
è¡ããè¡ããããŒã¿ã«ã¢ã¯ã»ã¹ã§ããŸãããããã¯ãæéããšã®å€æŽãèšç®ããããåŸåãç¹å®ããããç°ãªãæéã«ãããå€ãæ¯èŒãããããã®ã«åœ¹ç«ã¡ãŸãã
SQLã®äŸïŒ
SELECT
date,
sales,
LAG(sales, 1, 0) OVER (ORDER BY date) AS previous_day_sales,
sales - LAG(sales, 1, 0) OVER (ORDER BY date) AS sales_difference
FROM
sales_data;
ãã®ã¯ãšãªã¯ãåæ¥ãšæ¯èŒãã売äžé«ã®å·®ãèšç®ããŸãã`LAG(sales, 1, 0)`颿°ã¯ãåã®è¡ïŒãªãã»ãã1ïŒãã売äžé«ã®å€ãååŸããåã®è¡ããªãå ŽåïŒããšãã°ãæåã®è¡ïŒã0ïŒããã©ã«ãå€ïŒãè¿ããŸãã
Pythonã®äŸïŒPandasã䜿çšïŒïŒ
import pandas as pd
# 'date'åãš'sales'åãæã€Pandas DataFrame 'sales_df'ããããšä»®å®ããŸã
sales_df['previous_day_sales'] = sales_df['sales'].shift(1)
sales_df['sales_difference'] = sales_df['sales'] - sales_df['previous_day_sales'].fillna(0)
ã°ããŒãã«ãªã¢ããªã±ãŒã·ã§ã³ã®äŸïŒã°ããŒãã«èªç©ºäŒç€Ÿã¯ããªãŒã颿°ãšã©ã°é¢æ°ã䜿çšããŠãç°ãªãé±ã«ãããåãã«ãŒãã®èªç©ºåžè²©å£²æ°ãæ¯èŒããæœåšçãªéèŠã®å€åãç¹å®ã§ããŸãã
4. ã©ã³ã¯ãšãã³ã¹ã©ã³ã¯
RANK()颿°ãšDENSE_RANK()颿°ã¯ãæå®ãããé åºã«åºã¥ããŠãããŒãã£ã·ã§ã³å
ã®åè¡ã«ã©ã³ã¯ãå²ãåœãŠãŸããRANK()ã¯ã®ã£ããã®ããã©ã³ã¯ãå²ãåœãŠïŒäŸïŒ1ã2ã2ã4ïŒãDENSE_RANK()ã¯ã®ã£ããã®ãªãã©ã³ã¯ãå²ãåœãŠãŸãïŒäŸïŒ1ã2ã2ã3ïŒã
SQLã®äŸïŒ
SELECT
date,
sales,
RANK() OVER (ORDER BY sales DESC) AS sales_rank,
DENSE_RANK() OVER (ORDER BY sales DESC) AS sales_dense_rank
FROM
sales_data;
ãã®ã¯ãšãªã¯ã売äžé«ã®å€ãéé ã«ã©ã³ã¯ä»ãããŸãã
ã°ããŒãã«ãªã¢ããªã±ãŒã·ã§ã³ã®äŸïŒã°ããŒãã«ãªãªã³ã©ã€ã³ããŒã±ãããã¬ã€ã¹ã¯ãã©ã³ãã³ã°é¢æ°ã䜿çšããŠãåœãŸãã¯å°åããšã®å£²ãçååãç¹å®ã§ããŸãã
é«åºŠãªãã¯ããã¯ãšã¢ããªã±ãŒã·ã§ã³
1. ãŠã£ã³ããŠé¢æ°ã®çµã¿åãã
ãŠã£ã³ããŠé¢æ°ãçµã¿åãããããšã§ãããè€éãªèšç®ãå®è¡ã§ããŸããããšãã°ã环ç©åã®ç§»åå¹³åãèšç®ã§ããŸãã
SQLã®äŸïŒ
SELECT
date,
sales,
AVG(cumulative_sales) OVER (ORDER BY date ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) AS moving_average_cumulative_sales
FROM
(
SELECT
date,
sales,
SUM(sales) OVER (ORDER BY date) AS cumulative_sales
FROM
sales_data
) AS subquery;
2. æ¡ä»¶ä»ãéèšã§ã®ãŠã£ã³ããŠé¢æ°ã®äœ¿çš
ãŠã£ã³ããŠé¢æ°ãæ¡ä»¶ä»ãéèšïŒããšãã°ãCASEã¹ããŒãã¡ã³ãã䜿çšïŒãšçµã¿åãããŠäœ¿çšââããŠãç¹å®ã®æ¡ä»¶ã«åºã¥ããŠèšç®ãå®è¡ã§ããŸãã
SQLã®äŸïŒ
SELECT
date,
sales,
AVG(CASE WHEN sales > 100 THEN sales ELSE NULL END) OVER (ORDER BY date ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) AS moving_average_high_sales
FROM
sales_data;
ãã®ã¯ãšãªã¯ã売äžé«ã100ãè¶ ããæ¥ã®å£²äžé«ã®ã¿ã®ç§»åå¹³åãèšç®ããŸãã
3. æç³»ååè§£
ãŠã£ã³ããŠé¢æ°ã䜿çšããŠãæç³»åãåŸåãå£ç¯ãããã³æ®å·®ã³ã³ããŒãã³ãã«åè§£ã§ããŸããããã«ã¯ãç§»åå¹³åãèšç®ããŠåŸåãæšå®ããå£ç¯çãªãã¿ãŒã³ãç¹å®ããæ¬¡ã«åŸåã³ã³ããŒãã³ããšå£ç¯ã³ã³ããŒãã³ããæžç®ããŠæ®å·®ãååŸããããšãå«ãŸããŸãã
4. ç°åžžæ€ç¥
ãŠã£ã³ããŠé¢æ°ã䜿çšããŠãç§»åå¹³åãšæšæºåå·®ãèšç®ããããšã«ãããæç³»åããŒã¿ã®ç°åžžãæ€åºã§ããŸããç¹å®ã®ç¯å²å€ïŒããšãã°ãç§»åå¹³åããã®+/- 3æšæºåå·®ïŒã«ããããŒã¿ãã€ã³ãã¯ãç°åžžãšããŠãã©ã°ãç«ãŠãããå ŽåããããŸãã
æ¥çå šäœã®å®éçãªäŸ
1. ãã¡ã€ãã³ã¹
- æ ªäŸ¡åæïŒæ ªäŸ¡ã®ç§»åå¹³åãèšç®ããŠãåŸåãšæœåšçãªå£²è²·ã·ã°ãã«ãç¹å®ããŸãã
- ãªã¹ã¯ç®¡çïŒããŒããã©ãªãªãªã¿ãŒã³ã®ããŒãªã³ã°æšæºåå·®ãèšç®ããŠããã©ãã£ãªãã£ãšãªã¹ã¯ãè©äŸ¡ããŸãã
- äžæ£æ€åºïŒçŸåšã®ååŒé¡ãéå»ã®å¹³åãšæ¯èŒããŠãç°åžžãªååŒãã¿ãŒã³ãç¹å®ããŸãã
2. å°å£²
- 売äžé«äºæž¬ïŒç§»åå¹³åãšçޝç©å£²äžé«ããŒã¿ã䜿çšããŠãå°æ¥ã®å£²äžé«ã®åŸåãäºæž¬ããŸãã
- åšåº«ç®¡çïŒéå»ã®å£²äžé«ããŒã¿ãåæããå£ç¯çãªãã¿ãŒã³ãç¹å®ããããšã«ãããåšåº«ã¬ãã«ãæé©åããŸãã
- 顧客ã»ã°ã¡ã³ããŒã·ã§ã³ïŒæéã®çµéã«äŒŽã賌買è¡åã«åºã¥ããŠé¡§å®¢ãã»ã°ã¡ã³ãåããŸãã
3. è£œé æ¥
- äºç¥ä¿å šïŒæ©åšããã®ã»ã³ãµãŒããŒã¿ã䜿çšããŠãæœåšçãªé害ãäºæž¬ããäºé²çã«ã¡ã³ããã³ã¹ãã¹ã±ãžã¥ãŒã«ããŸãã
- å質管çïŒçç£ããã»ã¹ãç£èŠããäºæ³ãããããã©ãŒãã³ã¹ããã®éžè±ãç¹å®ããŸãã
- ããã»ã¹æé©åïŒçç£ããŒã¿ãåæããŠãããã«ããã¯ãç¹å®ãã補é ããã»ã¹ãæé©åããŸãã
4. ãã«ã¹ã±ã¢
- æ£è ã¢ãã¿ãªã³ã°ïŒæ£è ã®ãã€ã¿ã«ãµã€ã³ãæéãšãšãã«ç£èŠããå¥åº·äžã®åé¡ã瀺ãå¯èœæ§ã®ããç°åžžãæ€åºããŸãã
- çŸæ£çºçã®æ€åºïŒçŸæ£ã®èå»¶ã远跡ããæœåšçãªçºçãç¹å®ããŸãã
- ãã«ã¹ã±ã¢ãªãœãŒã¹ã®å²ãåœãŠïŒæ£è ã®ããŒãºãšéå»ã®éèŠãã¿ãŒã³ã«åºã¥ããŠãªãœãŒã¹ãå²ãåœãŠãŸãã
é©åãªããŒã«ã®éžæ
ãŠã£ã³ããŠé¢æ°ã¯ã次ã®ãããªããŸããŸãªããŒã¿åŠçããŒã«ããã³ããã°ã©ãã³ã°èšèªã§äœ¿çšã§ããŸãã
- SQLïŒææ°ã®ãªã¬ãŒã·ã§ãã«ããŒã¿ããŒã¹ç®¡çã·ã¹ãã ïŒRDBMSïŒã®ã»ãšãã©ã¯ãPostgreSQLãMySQLïŒããŒãžã§ã³8.0以éïŒãSQL ServerãOracleãAmazon Redshiftãªã©ããŠã£ã³ããŠé¢æ°ããµããŒãããŠããŸãã
- PythonïŒPandasã©ã€ãã©ãªã¯ã
rolling()ã¡ãœãããšexpanding()ã¡ãœãããéããŠããŠã£ã³ããŠé¢æ°ã®åªãããµããŒããæäŸããŸãã - SparkïŒApache Sparkã®SQLããã³DataFrame APIããŠã£ã³ããŠé¢æ°ããµããŒãããŠããŸãã
ããŒã«ã®éžæã¯ãç¹å®ã®ããŒãºãšæè¡çãªå°éç¥èã«ãã£ãŠç°ãªããŸãã SQLã¯ãªã¬ãŒã·ã§ãã«ããŒã¿ããŒã¹ã«ä¿åãããããŒã¿ã«é©ããŠãããPythonãšSparkã¯å€§èŠæš¡ãªããŒã¿ã»ããã®åŠçãè€éãªåæã®å®è¡ã«ããæè»æ§ããããŸãã
ãã¹ããã©ã¯ãã£ã¹
- ããŒã¿ãçè§£ããïŒãŠã£ã³ããŠé¢æ°ãé©çšããåã«ãé »åºŠãå£ç¯æ§ãæœåšçãªå€ãå€ãªã©ãæç³»åããŒã¿ã®ç¹æ§ãååã«çè§£ããŠãã ããã
- é©åãªãŠã£ã³ããŠãµã€ãºãéžæããïŒãŠã£ã³ããŠãµã€ãºã®éžæã¯ãå®è¡ããç¹å®ã®åæã«ãã£ãŠç°ãªããŸãããŠã£ã³ããŠãµã€ãºãå°ããã»ã©ãçæçãªå€åã«ææã«ãªãããŠã£ã³ããŠãµã€ãºã倧ããã»ã©ãããŒã¿ãå¹³æ»åãããé·æçãªåŸåã匷調ãããŸãã
- ãšããžã±ãŒã¹ãèæ ®ããïŒãŠã£ã³ããŠé¢æ°ããæ¬ æããŒã¿ãæç³»åã®æåãšæåŸãªã©ããšããžã±ãŒã¹ãã©ã®ããã«åŠçããããç¥ã£ãŠãããŠãã ããããããã®ã±ãŒã¹ãåŠçããã«ã¯ãé©åãªããã©ã«ãå€ãŸãã¯ãã£ã«ã¿ãªã³ã°ææ³ã䜿çšããŸãã
- ããã©ãŒãã³ã¹ãæé©åããïŒãŠã£ã³ããŠé¢æ°ã¯ãç¹ã«å€§èŠæš¡ãªããŒã¿ã»ããã®å Žåãèšç®ã³ã¹ããé«ããªãå¯èœæ§ããããŸããé©åãªã€ã³ããã¯ã¹ãããŒãã£ã·ã§ã³å岿Šç¥ã䜿çšãããªã©ãã¯ãšãªãšã³ãŒããæé©åããŠããã©ãŒãã³ã¹ãåäžãããŸãã
- ã³ãŒããããã¥ã¡ã³ãåããïŒãŠã£ã³ããŠé¢æ°ã®ç®çãšããžãã¯ã説æããããã«ãã³ãŒããšã¯ãšãªãæç¢ºã«ããã¥ã¡ã³ãåããŸããããã«ãããä»ã®äººãã³ãŒããçè§£ããä¿å®ããããšã容æã«ãªããŸãã
çµè«
ãŠã£ã³ããŠé¢æ°ã¯ãæç³»ååæã®ããã®åŒ·åãªããŒã«ã§ãããç§»åå¹³åã环ç©åããªãŒã/ã©ã°å€ãããã³ãã®ä»ã®æéããŒã¹ã®ã¡ããªãã¯ãèšç®ã§ããŸãããŠã£ã³ããŠé¢æ°ããã¹ã¿ãŒããããšã§ãæç³»åããŒã¿ãã貎éãªæŽå¯ãåŒãåºããããå€ãã®æ å ±ã«åºã¥ããæææ±ºå®ãè¡ãããšãã§ããŸãã財åããŒã¿ã販売ããŒã¿ãã»ã³ãµãŒããŒã¿ããŸãã¯ãŠã§ããã©ãã£ãã¯ããŒã¿ãåæããŠããå Žåã§ãããŠã£ã³ããŠé¢æ°ã¯ãåŸæ¥ã®ã¢ã°ãªã²ãŒã·ã§ã³ææ³ã䜿çšããŠæ€åºããããšãå°é£ãªãã¿ãŒã³ãåŸåãããã³ç°åžžãç¹å®ããã®ã«åœ¹ç«ã¡ãŸãããŠã£ã³ããŠé¢æ°ã®äž»èŠãªæŠå¿µãšæ§æãçè§£ãããã¹ããã©ã¯ãã£ã¹ã«åŸãããšã§ããããã广çã«æŽ»çšããŠãããŸããŸãªæ¥çã«ãããå¹ åºãçŸå®äžçã®åé¡ã解決ã§ããŸãã